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Abstract

Vic describe a set of procedures for computing and updating an LU factorization of a sparse

matrix A, where A may be square (possibly singular) or rectangular. The procedures include a

Markowitz fa'torization and a Bartels-Golub update, similar to those of Reid (1976, 1982). The

updates provided are addition, deletion or replacement of a row or column of A, and rank-one

modification. (Previously, column replacement has been the only update available.)

Various design features of the implementation (LUSOL) are described, and computational

comparisons are made with the LA05 and MA28 packages of Reid (1976) and Duff (1977).

Keywords: Sparse matrix, LU factors, matrix factorization, matrix updates, rank-one mod-

ification, Fortran software.
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Sparse LU Factors "

1. Introduction

Gaussian elimination has long been used to obtain triangular factors of a matrix A. We write the
factorization as A = LU, where L and U are nominally lower and upper triangular. In general,
the rows and columns of L and U need to be reordered to make them strictly triangular. If A is

rectangular, U is upper trapezoidal.

The usual application of LU factors is to the solution of linear equations Ax = b. Often just

one such system is be solved, hut in many applications there is a sequence of related systems, in
which A is subject to certain elementary changes. We describe a set of procedures designed for

," both cases. The procedures are grouped according to the following major functions:

Factor For a given m x n real, sparse matrix A, use some form of Gaussian elimination to

compute a factorization A = LU, where L is m x m and U is m x n.

Solve For a given rn-vector b, use the LU factors to find an n-vector x that solves the linear

system Ax = b. (If A is singular or rectangular, only a subset of the equations may be
satisfied accurately.)

Update Modify L and U to obtain a new factorization A = LU when A is altered in one of the

following ways:

addition, deletion or replacement of a column of A;

addition, deletion or replacement of a row of A;
modification by a matrix of rank one (A ,- A + a'vw T).

Each Update maintains U as an explicit, sparse, permuted triangle, but L is held in product form,
as the product of an arbitrary number of triangular matrices. The properties of the LU factors

are as follows:

1. L = M 1M 2M 3 ... is a product of unit triangular matrices Mk, where each Mk is the identity

matrix with just one nonzero entry -ilk above or below the diagonal. Thus,

Mk I kei e (1.)

for some unit vectors ei,, ej,, Itk jk. The scalars li are called multipliers.

2. The multipliers in (1.1) are bounded according to

I!I K < i, (1.2)

for a given threshold p _ 1. A typical value is p = 10, which allows a balance between

numerical stability and the preservation of sparsity (see Section 2).

3. The ,iatrix PUQ is upper triangular for certain Frmutation matrices P and Q.

Note that an LU factorization of this kind exists for any matrix A, whether square or rectangular, 0

singular or not. By construction, L is nonsingular and should be well-conditioned throughout as

long as i in (1.2) is not too much greater than 1. The dimensions and condition of A are almost

always reflected in U, which will be singular if A is singular.

The procedures to be described have been implemented in a set of Fortran routines called es

LUSOL. We shall use that name to refer to some or all of the complete set.

.. * *. ... ~ .. ' .-'t-- ,+. i~ -,, , -*. . _ , . + _. . ._.. . . -': . . . -_-
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1.1. Background. A int.thod for updating LU factors following colmn replacement was pro-

)osed by Bartcls and Golub (1969), who later suggested a more efficient approach in which

matrices Mk were accumulated in product form as above (see Bartels, 1971: Bartels, Stoer and

Zenger, 1971). The freedom to choose between the two forms of Mk (ik < jk or ik > jk) was

fundamental. The multipliers were bounded by f = 1, since sparsity was not a consideration.

The techniques to be discussed are most closely related to those developed by Reid (1976,

1982) in the subroutine package LAOS. LA05 works with square matrices that are subject to

column replacement; it performs a sparse LU factorization and a sparse Bartels-Golub update.

Properties 1 3 above are maintained during the update, and in practice the package has proved to

be efficient and reliable. A potential drawback is that Property 2 is not necessarily satisfied by the

initial factorization (which is stabilized by controlling the size of the elements of U, rather than

those of L). If A is significantly ill-conditioned initially, some of the multipliers pk will probably

be large. Since these are retained for all subsequent updates, the condition of the factors of L

cannot improve even if A later becomes well-conditioned.

In developing LUSOL, our aims have been

* to allow for singular and/or rectangular systems;

* to expand the range of update options, including ones that alter the size of A;

* to ensure stability by controlling the size of the multipliers throughout.

1.2. Applications. The most important update is column replacement, which is vital to the

simplex method for linear programming (Dantzig, 1963) and to the reduced-gradient method for

linearly constrained optimization (Wolfe, 1962). LUSOL is employed for these purposes within the

large-scale optimization code MINOS 5.0 (Murtagh and Saunders, 1983). Column replacement is

*. required in several other algorithms in mathematical programming-notably, methods for solving

- complementarity problems, and fixed-point algorithms for solving nonlinear equations.

Since LUSOL is unique in allowing A to be rectangular, an application that is likely to increase

in importance is the solution of sparse linear least-squares problems

min 1b - A XI1, (1.3)

in cases where it is practical to compute LU factors of A but not orthogonal factors. Problems

of the form (1.3) occur at every iteration in recently proposed "nonlinear" approaches to linear

programming (see, e.g., Karmarkar, 1984: Gill et al., 1985; Todd and Burrell, 1985). When

?n > n, the factors of A take the form A LU LU, where L is m x n and Uis n x n. If is

nonsingular, the solution of (1.3) can be obtained from the system

min lb - LjY, (1.4)

where Ox y. As noted by Peters and Wilkinson (1970), it may be advantageous to solve (1.4)

rather than (1.3) if L is better conditioned than A--one of the aims of our procedures. For

'd .. . . . ... .. . .~ . ... _ .••.. i . ., ".,-i-~' ' ? '- '" .:"i"" .



Sparse LU Factor. 3

example, if (1.4) is solved by an iterative algorithm such as the method of conjiugate gradients,

the rate of convergence of the iterative algorithm may be improved (see Biirck, 1976). Some

experiments along these lines have been described by Saunders (1979). The linear programming

context is discussed by Gill et al. (1986).

A further application is to the estimation of the singular values of a sparse matrix. The

approach described by Foster (1986) requires a well-conditioned factor L and various column

updates.

A review of alternative updating methods for sparse matrices has been given by Gill et

al. (1984).

2. Fundamentals

The key to Gaussian elimination and to the algorithms described here is the LU factorization of

a matrix consisting of two rows. The LU factors take two possible forms:

-- -- =b L V L (2.1)

( t) = 1 T1) , 12 =-a/13, t= V +A2w. (2.2)

Only the case a 0 0, i 0 need be considered. (If a or /3 is already zero, the original matrix is

trapezoidal and we regard it as already triangularized; no factorization is needed.)

The choice between the two forms must be made first on numerical grounds, using the

threshold a3 in (1.2). If i J _ ji, (2.1) is regarded as acceptable. Otherwise it must be true that

11021 - /A, and so (2.2) is acceptable. In effect, (2.2) involves a row interchange.

Use of these elementary factorizations is commonly known as pairwise pivoting. When ft > 1,
an associated term is threshold pivoting.

2.1. Stability versus sparsity. If 1pj and 1/*21 are both less than fi, it might seem desirable to

choose the smaller of the two, to cater even further to numerical stability. (Recall from standard

linear algebra that a power of p3 occurs in the bound on the growth in elements of the LU

factorization.) However, we follow common practice in making the choice on sparsity grounds,

since substantial growth almost never occurs in practice. In general the vectors (a vT) and

(13 WT) will be two rows of a sparse matrix, and the data structure used will include a count

of the number of nonzeros in each row. Let len(v) (the "length" of v) denote the number of

nonzeros in the vector v. If len(v) <_ len(w) we choose (2.1), because the number of nonzeros in the

trapezoidal factor will then be minimized. (Only v and w need be considered since len(ii) = len( u, w.

even if there is cancellation in forming t5 and tD.)

2.2. Error analysis. Let e be the precision of floating-point arithmetic and consider the factors
in (2.1). For reasonable values of/f, the computed ul and tb are exact for perturbed data 0

-........ ,...........:. .. ,. .-...- .- ....-. ..... ..
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and wj + 6j, where
16ul ,I l

I !< 2.01flii 1  S 2.01f(Iw, i + I l, i ivi )
(see Wilkinson, 1965; Reid, 1971). Although the relative perturbations bj/wj may not be small,

enforcing a bound lI : ft helps avoid excessive absolute error, and also discourages a com-

pounding effect when iii plays the role of v or wr in later elementary factorizations.

Pairwise pivoting may be used in many ways to obtain a factorization A = LU for a general

matrix A. In particular, Gaussian elimination with partial pivoting may be regarded as pairwise

pivoting with the restriction that L be a (permuted) triangle. The classical error analysis of

Wilkinson (1965, p. 214) applies when t = 1. This has been generalized by Reid (1971) for

arbitrary fl. Reid's analysis applies to our Markowitz factorization procedure LUIFAC (see Section

5).
Two other forms of pairwise pivoting to obtain A = LU are described by Wilkinson (1965,

pp. 236-239). They are respectively column-oriented and row-oriented but are algebraically

equivalent. An error analysis has been given by Sorensen (1984) for the case f 1. Our second

factorization procedure LU2FAC is a threshold form of the row-oriented algorithm (see Section

5.6), and Sorensen's analysis could be extended to cover this case.

Further pairwise pivoting is employed by all of our update procedures. The case of col-

umn replacement has been analyzed by Bartels (1971), again assuming ft = 1, and an arbitrary

sequence of updates might be analyzed in a similar way.

Note, nowever, that in all of the analyses cited, the error bounds obtained are extremely
pessimistic. Suffice to say that threshold pairwise pivoting limits the likelihood of growth in IILI
and IlUlI, and with reasonable values such as ft = 10 or perhaps 100, it is in practice an effective

strategy for factorizing and updating alike.

2.3. Discussion. The factorization (2.1) could have been written in the slightly simpler form

//wT  t0 ti Tr , 4 t= /a, tb = W -ISv,

lint we (arbitrarily) prefer addition to subtraction in forming xi, and during forward or backward

substittution wji. the 2 - 2 triangular factor. Similar remarks apply to (2.2).

AIternatively. it is common to think of Gaussian elimination as multiplying by unit triangular

uuatrices rat.her than factorizing. Thus (2.1) is equivalent to

pt d T  0f T • III = -0/a, tb = t + p, ".-

Mi,,l i,, fa, t,,zatj,n 4 l. .M1 M 3 U is equivalent to NA .... N3N2NIA U, where

N d IthI1ti CiI t4, Mk ,x,'pt f,,r the sign if p*. We prefer to work with A = LU rather than

NA I'* I" ( 101,C. f,,w wig a hrct Ftctor ,,perat ion, the quantities (ilk, k, j) defining each Mk

havy Ii. Tearsity par tern if aet 'xpjlicit triungu ,ar matrix L. The product N = ... A 3N 2N1 , if

firi .d ,xplicitly. w,,ull ii gen,.reil 1,w ce,,sid'rahly less sparse than L.

* % - . .. - *. *
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3. Data structures

In lat'r sections we shall make explicit reference to the data structures used to represent L and

U. Here we define the main data structures - the simpler ones first.

3.1. The permutations P and Q. Recall that the matrix PUQ is upper triangular (or upper

trapezoidal). The permutations are represented by two integer arrays P amid Q of length in and

n, respectively. The k-th diagonal element of PUQ is contained in row Pk and column Qk of the

matrix U.

3.2. Data structures for Solve and Update. The Solve and Update routines work with data

structures similar to those used by Reid in LA05:

1. The components of L are stored in a sequential file as a lengthening list of triples (ilk,ik,jk)

(one triple for each triangular factor M'k).

2. The nonzeros of U are stored by rows in a row list that allows for fill-in (additional nonzeros)

when a multiple of one row is added to another. (Reid additionally maintains a column list

for the sparsity pattern of U; see Section 3.3.)

The L-file is implemented using three parallel arrays, with entries made backwards, starting

at the end. We shall say that L is stored in an ordered list {A, indc, indr}, where A is an array

containing the sequence of multipliers 11k, and indc, indr are arrays of the corresponding indices

ik, J.

Similarly. the U-file is implemented as a row list {A, indr, lenr, locr} holding pairs (LtU,j),

where for i = 1 to m the i-th row of U contains lenr(i) nonzeros, stored consecutively in the

arrays A and indr, starting at location locr(i). The nonzeros in row i are not in any particular

order, except the first nonzero is normally the i-th diagonal element of PUQ. (Note that indr

refers to indices in a row list, which are column numbers, not row numbers.)

When a row of U is modified, we attempt to do the modification in-place, making use of any

free space that may have arisen at the end of the row. (We do not look for possible free space

before the beginning of the row.) If there is too much fill-in, the row is moved to the end of the

row list, where there will generally be ample storage, and the locations previously occupied are

marked as free. Thus, the rows of U are not in any particular order, but we know where each

row begins and how long it is.

Periodically the row list is compressed to recover the free space that accumulates between

rows. Compressions do not alter the ordering of rows or nonzeros, but they require a traverse

of the entire list; hence the desire to update in-place. Occasionally we force a compression,

not because storage is exhausted but because the length of the list is currently I times greater

than it would be if compressed (where I is typically 3). This policy should be beneficial in a

virtual-storage environment.

3.3. Data structures for Factor. The factorization procedure of Section 5.1 requires more

complex data structures, to allow efficient searching of both rows and columns of the submatrix
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remaining to be factorized. A row list Ii-.dr, lenr, locr is used as before to store the columnb.

indices of the nonzeros in each row (but not the corresponding elements of 17). The itozeros

themselves are stored as pairs (Uo, i) in a column list { A, indc, lent, locc} in order to facilitate the

stability test, which compares a potential pivot element with other nonzeros in the same column.

Additional data structures maintain the rows and columns in order of increasing length.

Eventually, the columns of L and the rows of U are repacked into the data structures required

by the Solve and Update procedures. :.,

4. Sequences of eliminations

The LU factorizations in (2.1) and (2.2) are constructed to eliminate a single nonzero element a

or /3 from a two-row matrix. In general, Gaussian elimination is organized so that sequences of
consecutive nonzeros are eliminated from either one row or one column of a larger matrix. We

distinguish between the two cases.

4.1. Forward sweeps. During updates, the matrix PUQ is often upper triangular except for

one row (commonly called a spike). The process of obtaining LU factors of such a matrix is called
a forward sweep. Consider the 8 x 8 example

PUQ=

where the spike is row 7. Since the first nonzero in the spike row (/3) lies in column 2, the first

stage of the forward sweep is to factorize rows 2 and 7 to eliminate either or a, using (2.1) or

(2.2).

Note that many of the rows of U will have been used previously to eliminate various nonzeros.

hence it is likely that the existing diagonals of PUQ will be sufficiently large to eliminate nonzeros

in the spike row without interchanges. Our strategy therefore is to treat the spike row specially

by constructing a vector of pointers to each of its nonzeros (in this case /3, u 4 and Ws). For

convenience, let W2  3 /; then we define an n-vector locw as follows:

I if W is stored in location I (wi, ~0, 1 > 0);
locw(j) = *~0 otherwise (i.e., if w, = 0).

To perform the elimination, locw is used to scan the spike row (whose index is denoted by

iw), looking for the next nonzero. Assuming that no row interchanges are required, the outer

... ..... .. .....-.- . .... .-- -. '.'--..-...-.....~ . ..'-. ... - ... - .-..... .... .-.-. . •. --. . ...-.



Sparse LU Factors 7

loop has the following form, where k, and k2 mark the beginning and diagonal of the spike row

respectively, and last marks the end of the list of nonzeros in to:

for k =k to k2

j= Qk, I= locw(j) r

if I > 0 then

iv =P (a is in row iv)

a = A(locr(iv)) (first nonzero in row iv)

3 = A(1)
/3/a.

(delete /3 from w):

A(l) = A(last), jlast = indr(last)

indr(l) = jlast, indr(last) = 0

locw(jlast) = 1, locw(j) = 0

last = last - 1

(inner loop):

compute w -- w + ptv

end if

end outer loop

If a row interchange is needed to satisfy the stability test, Pk is set to iw and Pk, to iv. We exit

the loop and alter locw to mark the nonzeros of the new w (i.e., the old v). We then re-enter the

loop from the top with k1 set to the existing value of k, knowing that the opposite interchange

will not occur.

In the inner loop, the nonzeros of v are scanned (using the row list). The array locw now

determines whether a new nonzero will be created in w. If wj is already nonzero, its location is

known, and it can be modified in-place. Otherwise, a fill-in occurs, and we insert the new element

into the row list at the end of the present elements of w. Assuming space for fill-in, the inner

loop has the following form:

for j such that vj 9 0

I = locw(j)

if I > 0 then

A(1) = A(l) + pv1 (modify existing to,)

else

last =. last + 1 (add fill-in to the end of w)

A (last) = pvi

indyl last) = j

locw(j) = last

end if

end inner loop

- - --. . -

* .. ' - - - . . . - . * . p*%* ~ - 9 .



8 ~spar.ie LUT Factormi

If n is currently stored at the end of the row list, there will be space for tny ainujnt ,of fill-in.

Otherwise, an identical inner loop is used. except following the "else" we test, whether the hcation

about to be used for the fill-in is already occupied (by the first nonzero of some other row). If so,

we exit the locp, move w to the end of the row list, and continue with the simpler itner loop.

Since the outer loop deletes the current /3 from w at each stage, there is always room for at

least one fill-in during the inner loop. In the above example, suppose that the stability test does

not force a row interchange. When /3 is eliminated, it is overwritten by the last element of w

(which could be/3, w4 or ws since the nonzeros in each row are not in any particular order). The

location previously occupied by the last element is then free to accommodate the fill-in caused

by v 6 . Note that locw(6) = 0 initially but locw(4) points to W 4 , which can be modified in-place.

After the fill-in, locw(6) will point to the new nonzero W6 . On conclusion of the first part of the

forward sweep, a new triple (it, 7, 2) is added to L.

Continuing with the present example, the second part of the forward sweep is the same as the

first, with the modified W4 playing the role of/3 and row 4 becoming the current (a v T ). This

time the fill-in produces a nonzero w7 , which by chance will survive the remainder of the sweep

to become a diagonal element of the final PUQ. A triple (,, 7,4) is also added to L. Finally, the

third part of the sweep adds a triple (p, 7,6) to L, eliminating W 6 but not altering W 7 or we.

When the outer loop terminates, it remains to set previously non-zero elements of locw to

zero (in preparation for any future sweep), and to move the diagonal of the spike row to the

front of that row in the row list. If the diagonal was never created or has vanished as a result of

cancellation, we return an indication of singularity. This can often be ignored since subsequent

updates may r- cve the singularity before any solve is requested.

In practice we find that forward sweeps usually require very itile rearrangement of the rows

of U. When /2 10, the stability test seldom forces a row interchange, and the sparsity test

applies with not much greater frequency. Once a spike row has been moved to the end of the row

list, it is likely to remain there for the rest of the forward sweep. The increase of nonzeros in L

and U is relatively slight because almost all of the rows of U are completely unaltered.

4.2. Backward sweeps. As just described, a forward sweep involves adding a multiple of

several different rows of U to one particular (spike) row. In contrast, a backward sweep involves

adding a multiple of a spike row to several other rows of U, so that the potential for fill-in is

much greater.

In particular, suppose that A = LU with PUQ triangular as usual, and that we wish to

obtain an LIT factorization of the matrix (c U ), where c is a given sparse vector. To illustrate
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t.Ii proredure, consider the example

Cl X -

a 112 114 V6

(Pc PUQ)=

X

13 W7 WS

where it is convenient to assume that P = I and to let a c C2, 3 C7. The approach is to process

the nonzeros of Pc backwards, using the bottom nonzero f to eliminate "higher" nonzeros one by

one. In this situation, it is desirable to use (2.2) whenever possible, since adding a multiple of a

"short" row w to earlier rows of PUQ will not create subdiagonal elements that would otherwise

have to be eliminated. With the present example, we hope to factorize rows 2 and 7 and then

rows 1 and 7 to eliminate a and cl respectively.

As always, it may be necessary to use (2.1) instead. In the example, adding a multiple of v

would turn w into a row spike of PUQ. However, we effectively perform a row interchange by

switching two elements of P, so that the modified w becomes a normal row of U and v becomes

the spike.
In general, the bottom nonzero 0 defines the current spike row, and each 2 x (n + 1) factor-

ization (2.2) adds a multiple of the spike w to another row that is at least as long, so that no new

subdiagonal elements are introduced into PUQ. If (2.1) is used, the spike is in effect redefined to
be a longer row, but again will be added only to rows that are at least as long.

When the backward sweep is complete, we have a factorization (c U) = LU where U is a

permuted trapezoid. More importantly, however, the last n columns of U are triangular except

for at most one row. To complete an Update, some other vector is typically added to the spike

row, and the resulting matrix is triangularized by a single forward sweep.

To implement the backward sweep we again treat the spike row specially (as in a forward

sweep), since it is likely to remain the spike for several eliminations. The array locw points to
nonzeros within the spike row as before, and a first inner loop takes the form

for j such that vj # 0

I = locw(j)
if I > 0 then

vj = vj + tiA(l) (modify existing v using w, in location 1)

markl) = k

nurniw numw + 1
end if

end first inner loop

S" - A - ... . .-P. - . • . . -
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where ark(l) is needed to record which nonzeros wj are accounted for on the k-th pass through

the outer loop (the count of these elements is given by numw). Each other nonzero )f w creates P

a new element of v, giving a second inner loop of the form:

for I locating wj 0 0

if inark1l) : k then

last = last + 1 (add fill-in vj to the end of v)

A(last) = IA(l)

indr(last) = j
end if

end second inner loop

The maximum amount of fill-in, len(w) - numw, indicates whether the second inner loop is to

be performed, and if so, whether the number of free locations at the end of v is adequate. When

necessary, the row containing v is moved to the end of the row list before the second loop is

executed.

The data structures described for a backward sweep are similar to those used in the Markowitz

Factor routine MA28 (Duff, 1977) and in our own Markowitz Factor, LUIFAC (see Section 5.1).

In the implementation, the inner loops for forward and backward sweeps are slightly more

complex than shown. Following common practice, we test computed "nonzeros" against some

absolute tolerance (typically of order 10-12 on machines with 15 or more digits of precision) and

if possible eliminate them immediately from the data structure. Although numerical cancellation

is rather rare, experience shows that taking advantage of it can improve the sparsity of the factors

slightly and at the same time reduce the occurrence of floating-point underflow.

4.3. Sparse AXPY procedures. The vector operation known as AXPY (y - ax + y) usually

involves a single scalar a and two dense vectors x and y. It can be generalized in various ways. For

example, there could be a sequence of AXPYs involving several x's and one y (as in y -- y + Xa

where a is now a vector), or several y's and one x (as in Y - Y+xaT): see the procedures GEMV

and GERI of Dongarra et al. (1985). Also, some of the vectors could be sparse; see AXPYI in

Dodson and Lewis (1985).

We note that the forward sweep described in Section 4.1 is in some sense a sparse implemen-

tation of GEMV, since it takes the form w - w + UTu if no interchanges occur, or a sequence of

such operations otherwise, where A is a vector of multipliers. Taking the opposite view, a general

sparse GEMV would perhaps be useful for implementing a forward sweep. However, the vector

a is not known in advance, and it is important to be able to interrupt the process for stability

and sparsity reasons and to continue efficiently with some other w. (In fact it is more accurate

to view a forward sweep as solving the system UTu = w by forward substitution, with provision

for swapping the partially transformed right-hand side w with some other column of UT, in order

to restrict the size of the solution vector it.)

.- *.. .. *----.'....-.'*-.l..... . ...
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Similarly, the backward sweep is a sparse form of GERI, since it takes the form U U +,iwT

(or a sequence of such operations). In this case it and w (or a sequence of such quantities) can

be determined in advance.

5. Factorization procedures

5.1. A Markowitz factorization. We now describe a procedure (LUIFAC) that computes

a factorization A = LU by Gaussian elimination with row and column interchanges, using the

pivotal strategy due to Markowitz (1957) to choose permutations P and Q such that PUQ is

upper triangular. Many of the implementation techniques follow those used by other authors

(notably Reid in LA05, Duff in MA28, and Zlatev et al. in Y12M), but a few novel features are

noted below.

First recall that the Markowitz merit function for selecting Aij as the next diagonal of PUQ

is Mij = (lenr(i) - 1) (lenc(j) - 1), and the strategy is to choose as small an Al 3i as possible

subject to a stability test. For k = 1 to min(m,n), the k-th stage of the factorization computes

the k-th column of L and the k-th row of PUQ, and updates A1 ,, lenr(i) and lenc(j) appropriately

(leaving a submatrix with one less row and column).

Various strategies have been proposed to limit the search for pivots, and to break ties when

Mij is the same for several potential pivots A1j. The usual first step to limit searching is to

keep track of the rows and columns with fewest nonzeros (Curtis and Reid, 1971). In LUlFAC

the rows and columns are held in two separate ordered lists within the permutation arrays, with

. the shortest ones appearing first. Thus, the rows of length nz are the set {P} for I = iploc(nz)

- to iploc(nz+ 1): 1, where iploc(i) gives the location in P of the first row with i nonzeros (and

similarly for the columns). Other authors have used linked lists rather than ordered lists, but to

date we have preferred the slight saving on integer workspace. By arranging to have available

both the old length and the new length of a row or column, we can update a list quite efficiently

by "bubbling" the row or column up or down from one set to the next. (The length of a row or

column seldom changes by more than one or two at each stage of the elimination, and frequently

does not change at all.)

Following Reid (1976), we search columns of length 1, then rows of length 1, then columns of

length 2, anti so on, applying a stability test to each Aij encountered. The search is terminated

when all remaining rows and columns are clearly too dense to yield an improved pivot.

5.2. Curtailing the search. To place a definite bound on the effort involved, some authors

search only the p shortest rows and no columns (or the p shortest columns and no rows), where

p is an input parameter; see Osterby and Zlatev (1983). Setting p as low as 1, 2 or 3 (say) can

lead to considerable savings on certain regularly structured matrices.

In the present context, one could search only the p shortest rows and the q shortest columns.

However, the real aim is to economize when there are many "ties"-i.e., when perhaps hundreds

of nonzeros all have the same merit and satisfy the stability test. We therefore terminate the

"' ' " -' " , .L,'" ."""', ,_'" ... .."" """,., ,, ,,:"'" " " "" ' ' , -". .. ". " ' ". .'' ." -". '.""" '., "," " " "•'" "' " ' -''''_•"' N,.,
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sctarch when p con.secutive tiCs have been encountered. Although some arbitrariness remains in

the' choice of p, this strategy has the advantage of continuing the search as hog as improved

mierits are being found with a reasonable (specified) frequency.

5.3. Breaking ties. Let Aij, Mij and i denote a nonzero, its merit, and the largest multiplier

generated if it were eventually chosen to be the pivot, and let Abest, Mbest and Pbest denote those

quantities for the best pivot found so far.

A new candidate will be rejected if Mj > Mbest or p > fi, and will be accepted as the
new "hest" Pivot if Mij < Mbest and i <_ ft. Otherwise, Mij = Mbest and p < fl, and some

tie-breaking strategy is required. We now discuss the following possibilities:

TBl: Ignore ties, as in LA05.

TB2: Maximize IAjI, as in Y12M.

TB3: Minimize the maximum multiplier 1L, as in MA28 (revised 1983).

T134: A combination of the last two (to be described below).

TBI has the advantage of allowing the search to terminate earlier (if it is not curtailed by a

small p, as discussed in Section 5.2). TB2 has a beneficial effect on diagonally dominant systems

. with symmetric structure: the pivots chosen will always be diagonal elements, so that symmetry

is preserved and stability is assured regardless of the size of fA; see Zlatev (1981) and Osterby and

Zlatev (1983). The same favorable property can be proved for TB3 and for our particular choice

of TB4.

TB3 deals directly with the size of the multipliers, which is particularly important in the

context of updat~ig. Like the stability test itself, TB3 requires A 1, to be sufficiently large relative

to other nonzerog in column j, excluding itself For example, the following algorithm applies the

stability test and simultaneously breaks ties, without necessarily scanning all nonzeros in column
j:

if Mj < Mbegt, tol =A 1, I'd

if M = Mbest, tot Abet

for r such that A,j : 0 do

if r $ i then

Cmnax = max{Cmax, IArI}
if Cm, _> tol, exit to end of outer loop (rejecting Aij)

end if

end inner loop

Mbest !M,, Abest =AijI, Pbest Cmx/Abest.

This strategy is suitable if there is no concern about singularity or curtailing the search as

discussed in Section 5.2.

o . . . .. . . .. ,. . . * . . * . .* . .. . . . . .



'B
I

Sparse LU Factors i,

In order to count consecutive ties, the code above must be modified so that tol is always set

to A,j IA. In this case, the exit from the inner loop will not occur quite so often, but we then have

the ability to combine TB2 and TB3. For the experiments reported in Section 9, the tic-breaking

rule was as follows, with 7 set to 2:

TB4: Favor a small p as already described for TB3. However, if p and Ibet are both sufficiently

small (p < -t and /pbest !<7 ), then choose the larger pivot.

For example, if the current best pivot is Abet = 0.1 with Pbet = 0.001, a new candidate Aij =

1000 is preferred if its maximum multiplier u is no larger than 2. Even on nonsingular unstructured

matrices, rule TB4 appears to have slightly better numerical properties than TB3 alone.

5.4. Singular systems. On ill-conditioned, singular or rectangular systems, particularly when

rn < n, it is common to hope that "small" elements of PUQ will not occur on the diagonal

(except when necessary). For example, of the possibilities

PUQ= 2 2 2 and PUQ 1 2 2 2
10- 3) 3 10-  " ,

the second is preferred. Unfortunately, none of the pivoting strategies discussed above satisfies

such a preference. The stability test is a threshold version of partial pivoting, whereas the desired

effect can be guaranteed only by some form of complete pivoting (e.g., see Wilkinson, 1979).

Although Rule TB4 tends to achieve the desired effect on singular matrices, in order to be

certain of avoiding unnecessarily small diagonals, it is necessary to know Amaz, the largest nonzero

in the submatrix remaining to be factored. Before any tie-breaking rule is applied, we would then

have to reject a potential pivot Aij if it were smaller than 6 A.a.x for some conservative value

such as 6 = 10 -
3. Maintaining Am. may prove to be expensive, but we hope to investigate ways

of doing so. One possibility is to update a vector containing the largest nonzero in each column

(since only a few columns are altered at each stage), and to maintain a permutation array that

lists these values in descending order, so that Am. will be readily available as the first element.

5.5. The elimination loop. Once a pivot has been selected, the actual elimination adds a

multiple of the pivot column to all other columns containing nonzeros in the pivot row. Most of

the arithmetic occurs in an inner loop that alters existing nonzeros (as opposed to creating new

ones). The alteration is performed in-place, using an inner loop that is essentially the same as

in MA28 (Duff, 1977). Fill-in is handled later in several stages, in a way that avoids calls to the

storage-compression routine from within the inner loop---a seemingly desirable feature but not a

crucial matter in practice.

5.6. A preassigned factorization. While the Markowitz strategy performs admirably in prac-

tice, it is usual to expect greater efficiency in cases where "good" permutations P and -Q are

already known. (For example, if a matrix A has already been factorized by LUIFAC, the result-

ing permutations may be almost acceptable for some other matrix B that has the same sparsity

structure but different numerical values.)

....................................................... -. -
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Such cases are treated by a procedure (LU2FAC) that calls the forward sweep routine m times,

processing each row of PBQ in turn to eliminate any nonzeros below the diagonal. If A and B

are identical, essentially the same factorization will be obtained (with L stored by rows instead

of columns). Otherwise, the column permutation Q will be retained but the row permutation P

will be perturbed where necessary to preserve stability.

The code NSPIV of Sherman (1978) is also a row-oriented implementation of Gaussian elim-

ination that assumes availability of "good" row and column orderings. In contrast to our pro-

cedure, NSPIV retains the given P but alters the column permutation Q to preserve stability.

Sherman considered several methods for implementing what is effectively a forward sweep as de-

fined here. We have not attempted a detailed comparison. Instead we note that LU2FAC makes

use of code already required by the Update procedures, and is therefore essentially "free".

For some applications, suitable permutations P and Q could be obtained from the P, or P4

ordering algorithms of Hellerman and Rarick (1971, 1972) or from the P5 algorithm of Erisman et

a]. (1985). These so-called Preassigned Pivot Procedures reorder a square, unsymmetric, sparse

matrix to be close to lower triangular form. (Thus, to factorize a given A, NSPIV would work with

the ordering obtained from A itself, but LU2FAC should be supplied with the ordering obtained

from AT)

In the case of P' (transposed), the ordered matrix would be block upper triangular:

/B1 1 Bl2 ... i

B 22  ... B2b
PAQ

Bbb/

and each block would also be block upper triangular except for the bottom rows:

B~ Di1 D id
Bi =Ddd S)

Rs

This structure is well suited to pairwise elimination by rows, since each square diagonal matrix

Dj, will be triangularized independently of the others, before the bottom rows (R S) are

processed. Row interchanges for stability do not disrupt the structure at any stage. The algorithm

implemented by LU2FAC therefore provides a stable, explicit factorization that apparently makes

maximum use of the P ordering. Since symbolic orderings are typically faster than Markowitz
orderings, a future comparison of MA28 or LU1FAC with the combination of Ps and LU2FAC

would be of definite interest.

6. Solve procedures

This section describes procedures to perform solves and matrix multiplication once an LU fac-

torization has been computed (and possibly updated).

L 
*, 

• ..
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6.1. Solution of systems involving A, L and U. Given the current factorization A = LU

and a vector y, the procedure LUOSOL computes a solution x to one of the following systems:

Lz = y, LTx = y, Uz = y, UTz = y, Ax -= , ATx = V.

(The last two cases make use of the first four.)

The solves involving L and LT can be performed by a short loop running through the list

of triples (,ik,jk), as in LAO5. In many cases, some components of x are negligible, thereby

allowing half of the associated pass through the loop to be skipped.

Recall that L is of the form LoM, where L0 is the result of a direct factorization and M is a

product of updates (if any). To increase efficiency slightly during solves with L and LT, the triples
corresponding to L0 are treated specially if they were produced by the Markowitz procedure (but

not if they came from LU2FAC). Instead of treating each triple separately as mentioned above, a

somewhat more complicated double loop takes advantage of the fact that ji is constant for each

column of L0 . This has the further advantage that if a component of z is negligible, a set of

consecutive triples, corresponding to a column of L0 , can be skipped during solves with L (but

not during solves with L, since the row structure of Lo is not known).

Solves involving U and UT are similar to those involving LT and L0 respectively. They are

somewhat different from LA05 because we retain only the row structure of U (whereas LA05

maintains the sparsity pattern of both the rows and the columns). Comparative timings would

depend to a large extent on the sparsity of y. The outer loop is complicated in our case by the
fact that U could be singular: either the length of a row could be zero, or the first nonzero stored

might not lie on the diagonal.

6.2. Associated procedures. In many contexts it is desirable to have a procedure for com-

puting matrix-vector products of the form

z = Ly, x = LTy, X = Uy, UTy, z= Ay, z= ATY.

We give two examples. First, the j-th column of A can be recovered as the product aj = LUej

after A has been overwritten by its LU factors. Second, in solving the sparse least-squares problem

(1.3), numerous products Ly and LTz are required during iterative solution of the associated

problem (1.4).

Stability and nearness to singularity may be monitored through the following quantities:

a = max jyk and U2 = l pi/q (where q is the current number of nonzeros in L);

e max 1U,j I, the largest element in U;

* max I(U&l and mi In(Tk, the largest and smallest nonzero diagonals in U.

For example, if 0'2 >> 1, it may be advisable to refactorize with a smaller bound (ft < al) on the

multipliers.

To pinpoint singularities, an n-vector w is computed as follows. Initially wj is set to be

max, U,, the largest element in the j-th column of U. Let d, be the diagonal lement associated
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with this column. If dj <t or dl < t2 wj (where t, and t 2 are input tolerances) then wj is negated.

The "nuumber" of singularities is thei the number of non-positive entries in w. This information

is useful if a nonsingular factorization is essential. For example, in the simplex method for linear

programming, one could replace the offending columns by judiciously chosen unit vectors, using

a series of updates.

In order to solve compatible singular systems, the solve procedure bypasses zero diagonals in

U, setting the associated elements of z to zero and summing the residuals on the corresponding

equations. (Here we follow Duff, 1977.)

7. Tools for the update procedures

All seven update procedures (to be described in Section 8) use a forward sweep, and the last

three use a backward sweep. We now describe three other tools needed in the updates.

7.1. Removing and inserting a column of U. When the j-th column of A is replaced or

deleted, any nonzeros in the j-th column of U must be removed. Because we do not maintain the

column structure of U, a substantial number of rows of U need to be scanned by our procedure,

whereas the analogous part of LA05C (Reid, 1976, 1982) may examine relatively few. However,

the inner loop to find the unwanted nonzeros is a single statement

if indr(i) = j then exit loop.

Furthermore, by scanning the rows in pivotal order (PA, for k = 1 to min(m, n)), we can terminate

" as soon as Qk = j, thereby setting an index k that is required anyway.

Conversely, when a column is replaced or added, a sparse vector v must be inserted as the

j-th column of U. Again the first min(m, n) rows are examined in pivotal order, looking for

nonzeros of v to insert, and an index I is returned to mark the last nonzero found. If the row list

has been compressed recently, a substantial number of rows may need to be moved to the end of

storage before the elements of v can be inserted.

7.2. Eliminating a single column. The final basic ingredient is a column elimination proce-

dure, which is needed when A has more rows than columns. The first min(r, n) elements of v

will have been processed by the column insertion procedure just described, and the remainder

are treated as shown by the following example.

Consider triangularizing a matrix of the form

PUQ= V6 z

V7

Vg

.......................
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in which m = 10, n = 5 and just one column has nonzeros v, below the main triangle. While pack

ing these nonzeros into the L-file, we note which is the largest-- say vp, where lipp -- max, , v,I.

This pivot element is overwritten with the last packed nonzero, and the other packe'd ei'4,ints

are changed to -vi/vP to become the appropriate multipliers. The matrix U is then triangular

except for a single element in row p, which is eliminated by a forward sweep.

8. Update procedures

Here we describe the seven available Update procedures. In each case, the modified matrix A will

be denoted by A.

8.1. Replacing a column (the Bartels-Golub update). Suppose that the j-th column of

A is replaced by a given vector c:

A = A + (c - aj)eT. (8.1)

Column replacement, the prototype Update, is the only update procedure that alters the column

permutation Q in order to improve sparsity. (Using the general rank-one update of Section 8.7

for the special case (8.1) does not alter Q and would tend to be less efficient.)

The first step is to solve Lv = c (Section 6.1). The existing j-th column of U is then removed

and v is inserted as a new sparse j-th column (Section 7.1), yielding a modified matrix U and

two indices k and 1. At this stage we have A = LIT, where PUQ is upper triangular except for

its k-th column, whose last nonzero is in row 1 (1 < k < 1 < min(m,n)), not counting elements

below the main triangle.

Now suppose that Q is altered by a cyclic permutation that moves its k-th column into

position I and shifts the intervening columns one place to the left, giving a new column ordering

Q. Most descriptions of the Bartels-Golub update refer to an upper Hessenberg matrix, which

would be PUQ0 in this notation. However, it is more useful to apply the same cyclic permutation

to the rows of P, giving a new row ordering P such that PUQ is upper triangular except for its

l-th row (and perhaps the bottom of its 1-th column).

For example, when m = 10, n = 7, k = 2 and I = 5, we have

X I k .

X I k
X I k. p~~~x. . k..,(82

I k
r r r k r r 82

-
k
k
k

where elements denoted by k and I were originally in the corresponding columns of PUQ, and

those denoted by r were originally in the k-th row. The subdiagonal elements r are eliminated by

.1*, *,*.*** * .. . -. . . . . . .. . . . . . . . . . .. . - .. . . . .
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t f,,rward sw,,p iS,'li ,iii 4,1 iand th, elientes k below the triangle are eliminated by a single

, li I I I liiiiti tt I ..1 ( S tit, i 7.2 (.

[hi, f,,rin of th,. [lart,'ls Glub update is conceptually the same as in LA05C (Reid, 1976, %
19821 whe. in in. By nt maintaining a column list for U we lose a useful feature of Reid's

In, 1 cliii'kittt'll. wherein the. rw spike with elements r (see (8.2)) can often be made shorter by
furthr atearations to P and Q. (Thus, Reid's forward sweep tends to add fewer nonzeros to L

i and 1'.) However. we beleve that the penalty for not including this featur- is usually slight (see

the rt.sults of Section 9).

8.2. Adding a column. A new column c is always added to the end of A:

A=(A c)=L( v).

* To perform this update, we solve Lv = c, insert v in U, and perform a column elimination (if

m > n). This is a subset of the operations involved in replacing a column.

8.3. Deleting a column. Here the complementary subset is required: removal of a column of

U, a cyclic permutation, and a final forward sweep. An additional task before the permutation is

to reduce the column indices by one for all nonzeros to the "right" of the deleted column. This

requires a scan of all rows of U.

8.4. Adding a row. This update (the simplest) can be expressed as

A= (A L )U)
r T  = 1 T  "

Once the given vector r is packed as a new row of U, a single forward sweep completes the task.

8.5. Replacing a row. If the i-th row is to be replaced, the new matrix may be written as

A = A - ei(a i - r)T. The rank-one procedure of Section 8.7 is therefore used. (If the old row is

not supplied, it is first recovered as ai = ATe,; see Section 6.2.)

Row replacement could be performed more easily on a factorization of the form NA = U,P.-

if N were maintained explicitly as a square matrix (sparse or dense). A certain row of N could

- then be discarded during the update, and the old row ai would not be needed. Difficulty arises

-. in our case because L is held in product form.

8.6. Deleting a row. In this case, the desired modification is expressed by A = A - e,aT, which W,

effectively replaces the i-th row by zero. As above, the general rank-one procedure is used, and

the old row must be supplied or computed.

Unfortunately, it is not known how to reduce the row dimension of the LU factors by 1, again %

. because L is held in product form. As a convenience and partial solution (of nontrivial cost), we %

' renumber the indices in L to permute the zero row to the bottom of A..-

i •'
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8.7. Rank-one modification. For a given scalar o and vectors v and w, this change is given

by

A AavvT L(U + ac ) L(c U) )

where Lc = v. From a backward sweep we obtain the factorization (c U) LU where the first

column of Ur is a unit vector, say 3el, and the remainder of U is upper triangular except for row

1. Thus, U (13ei U)and

A= LL( + OoeIWT) = LLU

where 7 is again upper triangular except for row 1. A forward sweep eliminates that row and

completes the modification.

In practice the vectors w and c are likely to be sparse, and it is worthwhile curtailing the

backward sweep in the following way. Ignoring the permutations P and Q, suppose that the first

nonzero of wT is in column k and the last nonzero of c is in row 1. If cl comprises the first k

elements of c, we have

C= (), U +cwT z{U +u ,(l T} +" , 0) T,"
C2 0C2 .

and the summation in braces can be performed without destroying the triangularity of U. As a

result, the backward sweep need be applied only to c2 . (In fact if k > I - 1 it can be skipped

altogether.) In one application, this observation roughly halved the rate of increase of nonzeros

in L.

Rank-one mgdification to LU factors has previously been studied by Gille and Loute (1982),

but their proposal does not have the stability properties of the method just described.

%,

~. .C,. q
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9. Computational results

Most of the computational results described here were derived from the set of linear programming

models listed in Table 1. The first three have been used as test problems elsewhere (e.g., Reid,

1982). All are available via Netlib (Dongarra and Grosse, 1985).* The scaling noted for the last

two problems is the default scaling performed by MINOS 5.0.

Table 1

Test problem statistics

Problem Rows Columns Nonzeros Scaled

STAIR 357 467 3857 No

SHELL 537 1775 4900 No

BP 822 1571 11127 Yes

PILOT 1460 3652 43645 Yes

The simplex method for solving such problems works with a nonsingular "basis matrix"

composed of a subset of the columns. STAIR and PILOT have a staircase structure that leads

to rather dense LU factors. SHELL is a network problem, for which it is known that all basis

matrices are triangular. BP has "dual angular" structure and requires an unusually high number

of simplex iterations, but its LU factors are quite sparse.

We have also experimented with the E(n,c) class of matrices, as described by Osterby and

Zlatev (1983). These are symmetric, positive definite matrices of order n similar to those obtained

by discretizing the Laplacian operator; they have five bands of elements (-1, -1,4, -1,-1) at

distances (-c, - 1,0, 1, c) from the main diagonal.

All runs were performed in double precision on an IBM 3081K (relative precision 2.2 x 10-16).

The source code was compiled with the IBM Fortran 77 compiler VS FORTRAN, using the options

NOSDUMP, NOSYM and OPT(3). The linear programming runs were made using MINOS 5.0, with

various routines being substituted in turn to Factor and Update the basis.

In the following sections, LUIFAC and LU2FAC denote the factorization procedures of Sections

5.1 anti 5.6. LU8RPC refers to the column replacement (Bartels-Golub) procedure (Section 8.1)
and LU8RPR denotes the procedure for row replacement (Section 8.5).

9.1. Factorization and solve procedures. From each linear program in Table 1, a typical

square basis matrix B was selected and factorized. We then solved two linear systems Bx = b

and BTr = c, as required by the simplex method. Table 2 shows the nonzero counts and the

computation times (in milliseconds). The stability tolerance ji = 10 was used for each Factor,

ani the storage provided was enough to hold approximately the same number of nonzeros.

* For details, send electronic mail to netlib@an]-mcs or to research!netlib saying "send index

fron p/data".

•', -. .. ~ . : * ,' . *: *. *b. : ,,.,, -S
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The first result for MA28 was obtained with the usual Markowitz search of both rows and %

columns. The second used the search strategy of examining the p shortest rows (and no columns),
with p = 10. For LUIFAC the search of rows and columns was terminated after p consecutive ties

were encounte':ed, with p = 10 throughout. (Little difference was observed in a few trials with

p = 20, 30 and 50.)

The ordering obtained by LU1FAC was used to test LU2FAC with the same matrix B. Slight

d;fferences in L and U are to be expected, since LU2FAC may perturb the row ordering for local

sparsity reasons. If the stability tolerance were altered, or if the nonzeros in B were changed, a

greater difference between LUIFAC and LU2FAC would be likely.

Table 2

Factor and Solve results for LP test problems

STAIR SHELL BP PILOT

Problem features .-

Dimension 357 537 822 1460

B nonzeros 3386 1490 4777 18834

LU nonzeros

LA05 4641 1490 6437 42598 -

MA28 4644 1490 6490 43120

MA28, p = 10 5041 1490 7521 53050

LUIFAC 4652 1490 6441 48037

LU2FAC 4648 1490 6437 48222

Factor time

LA05 402 39 538 15119

MA28 284 61 586 10047

MA28, p = 10 262 60 377 7247

LUIFAC 259 101 422 7419

LU2FAC 106 30 266 2219

Solve times

LA05 8 3 4 3 13 8 86 45

MA28 7 4 5 4 13 8 61 42

MA28, p=10 8 5 5 4 14 10 88 51

LU1FAC 6 3 4 4 10 9 58 45

LU2FAC 7 4 4 4 11 10 71 57

.5€
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The following observations are based on the results summarized in Table 2.

1. LA05 was noticeably faster than the other Markowitz routines on SHELL, because it, processes

triangular matrices essentially in-place (as does LU2FAC). Conversely, LA05 was significantly

slower than the other Factor routines on the denser problems STAIR and PILOT.

2. On all problems except SHELL, the second MA28 option was faster than the first but produced

rather dense LU factors with correspondingly higher Solve times.

3. LUIFAC was significantly faster than LA05 and the first MA28 option, except on problem

SHELL (where repacking the columns of L and the rows of U into pivotal order probably

accounts for much of the difference). On STAIR, BP and PILOT, the increases in speed of

LUIFAC compared to the next best code were about 10%, 27% and 35% respectively.

4. The results for LU2FAC show the efficiency of the forward sweep procedure.

Additional experiments on the LP problems were also performed. A third MA28 option was

tried on PILOT, requesting that the matrix be reduced to block-triangular form prior to LU

factorization of each block. This led to 5% fewer nonzeros in the factors but a 5% higher Factor

time. compared to the first MA28 option. When LUlFAC was applied to BT from PILOT, the

LU nonzeros were reduced to 42957 (comparable to LA05 and MA28), and the Factor time was

reduced by about 17% to 6162. This change occurs because the pivot strategy of LUIFAC is

essentially the transpose of that in LA05 and MA28. Table 2 shows that the Solve procedures

also performed differently on B and B2r (In linear programs, the right-hand-side vectors b are

typically more dense than the vectors c.)

For the E(n, c) matrices, we performed tests with n = 800 and c = 4, 44, 84, 124, 164, 204,

as in Osterby and Zlatev (1983). Symmetry was preserved as expected, and the importance of

curtailing the Markowitz search on matrices with regular structure (Section 5.2) was obvious.

The choice of p = 10 as the tie limit was satisfactory on these examples also; it could evidently be

"hard-wired" into the procedure for general and regular matrices alike. Elsewhere, two separate

statements were executed by far the most: those locating the pivot row and pivot column in

the ordered lists P and Q. Osterby and Zlatev economize in this area by updating the inverse

permutations as well -a significant aid on regular matrices for a moderate increase in workspace.

Table 3 gives factorization statistics for the tie-breaking rule TB4 (see Section 5.3; note that

on positive-definite matrices such as these, TB4 is equivalent to TB32). The total time required to

factorize the six matrices was 4.8 seconds. Similar results were obtained for rule TB3, except that

the total factorization time increased to 6.3 seconds if ties were recognized only when a smallei

multiplier was found.

9.2. Update procedures. In order to test the backward sweep procedure, the simplex methoc

was implemented by factorizing BT = LU and replacing a row of the matrix at each simplex iter.

ation, using LUSRPR (the row replacement procedure of Section 8.5). We would not reconmmen(

this approach in practice, but our results show that row replacem, ut can be carried out with a-
%t
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Table 3

Factors of E(800,c) with tie-break rule TB4, p =10

c LU nonzeros max IJLk1 ' IUjj I

4 7168 .97 .08

44 20424 .49 1.5

84 15896 .44 1.8

124 12096 .45 1.9

164 10496 .45 2.1

204 8738 .38 2.3

least tolerable efficiency. In fact (much to our surprise) it proved to be more efficient than our

implementation of column replacement on the simplest problem SHELL.

In simplex codes, a Factor is typically followed by k Updates, then a new Factor followed by k

Updates, and so on. Tables 4 and 5 compare LA05 with LUSOL over a series of simplex iterations,

with LU8RPC denoting the usual factorization and updating of B, and LU8RPR the same for B T.

Table 4 gives the average time for one factorization and k updates. The factorization frequencies

were k = 50 for all problems except SHELL, where k = 100. Table 5 gives the numbers of nonzeros

in the initial factorization and after i updates, where i = 20, 30, 40 and 50. For interest, Table 5

also shows the number of nonzeros that would be produced by the classical Product-Form (PF)

* update (Orchard-Hays, 1968), starting with LU factors of B T and using them as factors of B

itself.

Table 4

Average time (in seconds) for one Factor and k Updates

STAIR SHELL BP PILOT

(k = 50) (k 100) (k = 50) (k = )

LA05 1.91 1.42 2.45 25.1

LU8RPC 1.32 1.72 2.29 15.2

LUJ8RPR 2.31 1.65 2.75 20.0

As in Section 9.1, LA05 was significantly faster than the other methods on SHELL, largely
because of the additional permutations in Reid's implementation of the Bartels-Golub update,

which effectively maintains L = I and U -: B. The LUSOL procedures kept U as sparse as B,

but during 100 iterations the updates to L increased the total nonzeros by about 50%.

Table 4 shows that LA05 and LUSOL with column replacement performed equally well on

BP. but LUSOL showed a substantial advantage on STAIR and PILOT. Part of this is the result of

fewer compressions of the U-file: only two or three on average between factorizations, compared

%
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to ab.ut 20 for LA05.

Table 5 shows that all tlhiee LU procedures perform more efficiently than the PF update in

terms of total nonzeros. (However, the PF update has immense advantages with regard to ease

of implementation.)

Table 5

Factor and U'pdate nonzeros for LP test problems

STAIR SHELL BP PILOT

Bo 3540 1492 4777 18834

LA05 0 5307 1492 6437 42598

20 6313 1492 7093 45217

30 6648 1493 7433 46028

40 6767 1495 7602 47460

50 7126 1492 7713 48290

100 1493

LU8RPC 0 5385 1492 6441 .48037

20 6020 1835 7103 50129

30 6429 1914 7383 50629

40 6625 1964 7550 52063

50 6723 2013 7652 52842

100 2189

LU8RPR 0 5347 1492 6514 42957

20 9757 1590 8560 59907

30 12472 1636 9940 68541

40 15093 1709 11295 82693

50 17043 1751 11610 96809

100 1996

PF 0 5347 1492 6514 42957

20 12225 1866 17501 66535

30 15662 2076 22927 78268

40 19101 2313 28375 89869

50 22564 2461 33328 101531

100 3152

-.- f-. -.. .- . .. --f.t- - - . - -. . ,ft . . .. - . . . - . . . , . . . . . . .t. . .. -
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10. Conclusions

We have described the salicnt features of a set of procedures for maintaining triangular factors

of a sparse matrix, and demonstrated their practical efficiency on a representative range of prob-

lems. The Markowitz procedure LUIFAC appears to be competitive with existing codes on general

problems, and to be acceptably efficient on regularly structured matrices (as measured by per-

* formance on one class of problem, E(n, c)). Timings have not been compared with other Factor

* routines in the latter case, and the performance of the Update procedures has not been studied

on regular matrices.

During the last few years, LUSOL has been applied to very large matrices of the form

arising in an early version of a sequential quadratic programming algorithm for solving opti-

*mization problems in the electrical power industry (Burchett, 19 84). Consecutive column and

*row updates were employed to preserve symmetry. The promise of stability from bounding the

multipliers throughouit was consistently borne out in practice.

While column updates appear to be more efficient generally, we have shown for the first

time that LU factors of sparse matrices can be updated with respectable efficiency following row

replacement and/or rank-one modification. The techniques described here should be particularly

* useful for solving sequences of related linear equations.
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